Arithmetic Progressions on Pell Equations

نویسندگان

  • ATTILA PETH
  • VOLKER ZIEGLER
چکیده

IF Introduction sn IWWW fremner ‘I“ ™onsidered —rithmeti™ progressions on ellipti™ ™urvesF fremner ™onstru™ted ellipti™ ™urves with —rithmeti™ progressions of length UD iFeF r—tion—l points @X; Y A whose XE ™oordin—tes —re in —rithmeti™ progressionF sn — following p—per fremnerD ƒilverm—n —nd „z—n—kis ‘P“ showed th—t — su˜group of the ellipti™ ™urve E@QA with E X Y 2 a X@X 2 n 2 A of r—nk I does not h—ve nonEtrivi—l integr—l —rithmeti™ progressionsD provided n ! IF gontr—ry to the results of fremnerD ƒilverm—n —nd „z—n—kis ‘P“D g—mp˜ell ‘Q“ found —n innite f—mily of ellipti™ ™urves with W integr—l points in —rithmeti™ progressionsF „his result w—s improved ˜y …l—s ‘IP“D where —n innite f—mily w—s found with —n —rithmeti™ progression ™onsisting of IP integr—l pointsF sn this p—per we ™onsider ™urves of genus HD in p—rti™ul—r hyper˜ol—D with integr—l —rithmeti™ progressionsF snspired ˜y the results of fremner ‘I“D fremnerD ƒilverm—n —nd „z—n—kis ‘P“D g—mpE ˜ell ‘Q“ —nd …l—s ‘IP“ the —im of this p—per is to prove the following theoremsF Theorem 1. Let H < d P Z, d not a square and H T a m P Z. If there are three solutions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi&#039;{c} and Radoiv{c}i&#039;{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Arithmetic Progressions and Pellian Equations

We consider arithmetic progressions on Pellian equations x2 − d y2 = m, i.e. integral solutions such that the y-coordinates are in arithmetic progression. We construct explicit infinite families of d,m for which there exists a five-term arithmetic progression in the y-coordinate, and we prove the existence of infinitely many pairs d,m parametrized by the points of an elliptic curve of positive ...

متن کامل

On Simultaneous Arithmetic Progressions on Elliptic Curves

and we consider two equations related by such a change of variables to represent the same curve (equivalently, we will deal with elliptic curves up to so-called Weierstrass changes of variables). Consider P0, . . . , Pn ∈ E(K), with Pi = (xi, yi) such that x0, . . . , xn is an arithmetic progression. We say that P0, . . . , Pn are in x-arithmetic progression (x-a.p.) and also say that E has an ...

متن کامل

Higher Descent on Pell Conics. Iii. the First 2-descent

In [Lem2003b] we have sketched the historical development of problems related to Legendre’s equations ar−bs = 1 and the associated Pell equation x−dy = 1 with d = ab. In [Lem2003c] we discussed certain “non-standard” ideas to solve the Pell equation. Now we move from the historical to the modern part: below we will describe the theory of the first 2-descent on Pell conics and explain its connec...

متن کامل

Solvability of Diophantine Equations

Attila Bérczes (University of Debrecen): On arithmetic properties of solutions of norm form equations. Abstract. Let α be an algebraic number of degree n and K := Q(α). Consider the norm form equation NK/Q(x0 + x1α+ x2α + . . .+ xn−1α) = b in x0, . . . , xn−1 ∈ Z. (1) Let H denote the solution set of (1). Arranging the elements of H in an |H| × n array H, one may ask at least two natural questi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006